Journal of Organometallic Chemistry, 376 (1989) 277–281 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20275

Variable-temperature tin-119m Mössbauer spectroscopic and X-ray crystallographic study of triphenyltin(IV) chloroacetate, $[(C_6H_5)_3SnOC(O)CH_2Cl]$, and a redetermination of d[ln f(T)]/dT for triphenyltin(IV) acetate

Seik Weng Ng ", Kwai Lan Chin^b, Chen Wei^b, V.G. Kumar Das^b

^a Institute of Advanced Studies and ^b Department of Chemistry, University of Malaya, 59100 Kuala Lumpur (Malaysia)

and Ray J. Butcher

Department of Chemistry, Howard University, Washington, D.C. 20059 (U.S.A.) (Received January 9th, 1989)

Abstract

Five-coordinate triphenyltin chloroacetate was assigned a rigid, carboxylatebridged *trans*-C₃SnO₂ chain structure on the basis of variable-temperature tin-119m Mössbauer (d[ln f(T)]/dT -0.0105 K⁻¹ for 80 K $\leq T \leq 130$ K) data, and the assignment has been confirmed by X-ray diffraction. Its structure is determined from 5372 [$(F_o)^2 > 3\sigma(F_o)^2$] Mo- K_a reflections and refined to an R factor of 0.042; the compound crystallizes in the $P2_1/c$ space group with a 9.022(3), b 10.217(3), c 19.780(5) Å, β 92.46(2)°; Z = 4. Triphenyltin chloroacetate is isostructural with triphenyltin acetate, whose d[ln f(T)]/dT value has been redetermined to be -0.0143 K⁻¹.

Introduction

Triorganotin alkanoates are generally carboxylate-bridged, five-coordinate polymers [1] whose Sn-O-C=O: atoms comprise the repeat units. The polymer chain is zig-zag in trimethyltin acetate [2] and distorted helical in triphenyltin acetate [3], but is intermediate between the flat and helical conformations in the mixed compound dimethylphenyltin acetate [4]. Variable-temperature tin-119m Mössbauer spectroscopy [5,6] has been used to probe such structural variations since the temperature dependence of the Mössbauer recoil-free fraction $f(d[\ln f(T)]/dT = -a)$ provides a spectroscopic means of distinguishing between rigid and flexible structures for organotin polymers. There is some overlap of the -a values among the four (rod, zig-zag, stretched S and helical [7]) classes, but for phenyltin compounds in general the rigid polymers give rise to -a values of the order of 0.011 K⁻¹, whereas for more flexible polymers, the -a values approach those of non-interacting molecules (0.014–0.028 K⁻¹) [7].

Triphenyltin chloroacetate has in its ester unit an electron-withdrawing halogen, which could be expected to enhance the Lewis acidity of tin, but diminish the Lewis basicity of the carbonyl oxygen that participates in bridging [4]. Which of these two opposing effects will predominate can be assessed by comparing structural data for triphenyltin acetate and triphenyltin chloroacetate. The crystal structure and variable-temperature Mössbauer data have been previously reported [3] for triphenyltin acetate and the results of a similar study of the chloroacetate are described below.

Experimental

Crystals of triphenyltin chloroacetate were obtained by slow evaporation of a methanol solution containing equimolar amounts of $[2-\text{HOC}_5\text{H}_4\text{NCH}_2\text{C}(\text{O})\text{OH}]\text{Cl}$ [8] and $(C_6\text{H}_5)_3$ SnOH; m.p. 155–156 °C (Lit. 154–156 °C [9]). Anal. Found: C, 54.28; H, 3.86. $C_{20}\text{H}_{17}\text{ClO}_2$ Sn calcd.: C, 54.16; H, 3.86%. Mössbauer (80 K): isomer shift (IS) 1.31, quadrupole splitting (QS) 3.70, Γ_1 1.11, Γ_2 1.15 mm s⁻¹; slope of the variable-temperature (80 K $\leq T \leq 130$ K; 6 points, corr. coeff. –0.999) Mössbauer plot a –0.0105 K⁻¹. For triphenyltin acetate, the Mössbauer data are: IS 1.28, QS 3.48, Γ_1 1.05, Γ_2 1.12 mm s⁻¹, a –0.0143 K⁻¹ for 80 K $\leq T \leq 130$ K; 6 points, corr. coeff. –0.0999.

Structure determination

Standard centering and auto-indexing procedures on the crystal of triphenyltin chloroacetate were performed with a Nicolet P3m automatic diffractometer (Mo- K_{α} radiation, λ 0.71073 Å). Although the α and γ angles were very nearly 90°, the axial photographs pointed to a triclinic cell, whose accurate dimensions, determined from a least-squares fit of 15 reflections $(44^{\circ} < 2\theta < 45^{\circ})$ scattered evenly throughout reciprocal space, were a 9.022(3), b 10.217(3), c 19.780(5) Å; α 89.96(3), β 92.46(2), γ 90.07(3)°. Procedures for data collection were as previously described [10]. The intensities of 4 standard reflections (111, 004, 020, 200) measured after every 96 data showed no significant crystal decay during the collection of 16407 independent $(-14 \le h \le 13, -16 \le k \le 16, 0 \le l \le 32)$ reflections. Redundant and equivalent reflections were averaged and converted to unscaled $|F_0|$ values, following corrections for Lorentz and polarization factors. The structure was solved by direct methods using the MULTAN-82 program. Full-matrix least-squares refinement followed by difference Fourier synthesis revealed the position of all atoms. The non-H atoms were refined anisotropically. The H-atoms were assigned isotropic temperature factors equal to 1.2 of their respective parent carbon atoms. The computations were performed on a PDP11/73 minicomputer with the TEXRAY structure determination package [11]. The atomic scattering factors were taken from the International Tables for X-ray Crystallography [12,13]; the effects of anomalous dispersion for the non-H atoms were included in F_c [14]. The initial refinement in the $P\bar{1}$ space group converged to R = 0.046, $R_w = 0.059$ for the 11080 observed

Atom	x	y	z	$B_{\rm iso}$ (Å ²) ^a
Sn	0.08857(3)	0.70106(2)	0.23687(1)	2.300(4)
Cl	0.3707(1)	1.0386(1)	0.10475(7)	4.75(3)
O (1)	0.2064(3)	0.8683(3)	0.1940(2)	3.00(5)
O(2)	0.0463(3)	1.0163(3)	0.2272(1)	2.97(5)
C(1)	0.1480(4)	0.9811(4)	0.1912(2)	2.66(6)
C(2)	0.1988(6)	1.0756(5)	0.1384(3)	4.5(1)
C(11)	0.1429(4)	0.7418(4)	0.3406(2)	2.68(6)
C(12)	0.1865(5)	0.6376(4)	0.3821(2)	3.67(9)
C(13)	0.2346(6)	0.6571(5)	0.4489(3)	4.3(1)
C(14)	0.2388(6)	0.7814(6)	0.4754(2)	4.4(1)
C(15)	0.1971(6)	0.8857(5)	0.4347(2)	4.5(1)
C(16)	0.1487(5)	0.8676(4)	0.3681(2)	3.60(9)
C(21)	0.2412(4)	0.5682(3)	0.1959(2)	2.47(6)
C(22)	0.2141(5)	0.5080(4)	0.1343(2)	3.49(8)
C(23)	0.3156(6)	0.4214(5)	0.1080(3)	4.5(1)
C(24)	0.4479(5)	0.3916(5)	0.1447(3)	4.7(1)
C(25)	0.4767(5)	0.4526(6)	0.2057(3)	5.2(1)
C(26)	0.3741(5)	0.5398(5)	0.2317(3)	4.03(9)
C(31)	-0.0963(4)	0.7403(4)	0.1696(2)	2.80(7)
C(32)	-0.0664(5)	0.7651(5)	0.1022(2)	3.51(8)
C(33)	-0.1797(7)	0.7858(5)	0.0541(3)	4.6(1)
C(34)	-0.3227(6)	0.7850(5)	0.0716(3)	5.2(1)
C(35)	-0.3576(6)	0.7608(7)	0.1376(4)	5.9(1)
C(36)	-0.2430(5)	0.7405(6)	0.1867(3)	4.6(1)

Table 1

Table 2

 $\overline{{}^{a}B_{iso}} = \exp(-2\pi^{2}[h^{2}a^{2}U_{11} + k^{2}b^{2}U_{22} + l^{2}c^{2}U_{33} + 2hkabU_{12} + 2hlacU_{13} + 2klbcU_{23}]).$

 $[(F_o)^2 > 3\sigma(F_o)^2]$ reflections, but examination of equivalent reflections revealed that the intensities of the *hkl* and *hkl* reflections were equal within experimental error. The structure was thus re-refined in the monoclinic $P2_1/c$ space group; the final *R* and R_w factors are 0.042 and 0.063, respectively. The fractional coordinates and isotropic temperature factors for the non-H atoms for the final refinement cycle are

Se	lected	bond	distances	(Å) an	d angles	(°)i	n triphenyltin	chloroacetate

Bond distances				
Sn-O(1)	2.201(2)	$Sn-O(2)'^{a}$	2.372(2)	
Sn-C(11)	2.130(2)	Sn-C(21)	2.119(2)	
Sn-C(31)	2.127(2)	O(1)-C(1)	1.267(3)	
O(2)-C(1)	1.239(3)	C(1)-C(2)	1.508(4)	
C(2)-Cl	1.755(3)	$\langle C-C \rangle_{phenyl}$	1.385(4)	
Bond angles				
O(1) - Sn - O(2)'	174.75(6)	O(1)-Sn-C(11)	97.16(8)	
O(1) - Sn - C(21)	91.00(7)	O(1) - Sn - C(31)	89.50(8)	
O(2)' - Sn - C(11)	88.07(8)	O(2)' - Sn - C(21)	87.41(7)	
O(2)' - Sn - C(31)	86.51(8)	C(11)-Sn-C(21)	111.51(9)	
C(11)-Sn-C(31)	135.08(9)	C(21)-Sn-C(31)	112.73(9)	
Sn-O(2)'-C(1)'	143.7(2)	$\langle C-C-C \rangle_{phenyl}$	120.0(3)	

^a (') transformation: \overline{x} , $-\frac{1}{2} + y$, $\frac{1}{2} - z$.

listed in Table 1. Table 2 lists selected bond lengths and angles. Listings of anisotropic temperature factors and structure factors are available from the authors.

Crystal data: Triphenyltin chloroacetate, $C_{20}H_{17}ClO_2Sn$, M_r 443.50, monoclinic, $P2_1/c$, a 9.022(3), b 10.217(3), c 19.780(5) Å, β 92.46(2)°; V 1822(2) Å³, Z = 4; D_x 1.616 g cm⁻³, D_m 1.613 g cm⁻¹ (ZnBr₂/H₂O), μ_{Mo} 15.66 cm⁻¹, F(000) 880, R = 0.042, $R_w = 0.063$ for 5372 [(F_0)² > 3 σ (F_0)²] reflections.

Discussion

The Mössbauer IS and QS values for triphenyltin acetate and triphenyltin chloroacetate are in good agreement with reported values [3,9]. The variable-temperature study yielded a -a value of 0.0105 K⁻¹ for the latter compound, a value indicative of a rigid polymeric conformation. The -a value is slightly larger for triphenyltin formate (0.0115 K⁻¹ [15]) and triphenyltin 3-benzoylpropionate (0.0126 K⁻¹ [16]); both compounds are helical, carboxylate-bridged chains. An example of a helical, polymeric triorganotin carboxylate that is not carboxylate-bridged is triphenyltin 8-quinolyloxyacetate monohydrate (0.0199 K⁻¹ [17]); the water is coordinated to tin and the molecules are held together by hydrogen bonds between the water and the heteroatoms of the quinolyloxy group. The -a value of 0.0191 K⁻¹ reported for triphenyltin acetate [3] therefore appeared to us to be too high for a typical carboxylate-bridged structure, and we redetermined it and found it to be 0.0143 K⁻¹, which although still large, is more in keeping with the rigid polymeric conformation.

The crystal structure of triphenyltin chloroacetate is illustrated in Fig. 1. The molecules are carboxylate-bridged into a distorted helical chain whose geometry at tin is trigonal bipyramidal, with the oxygen atoms in the axially-most-electronegative positions (O-Sn-O' 174.75(6)°). The covalent and coordinate tin-oxygen bonds are somewhat unequal (2.201(2), 2.372(2) Å). The sum of angles in the equatorial plane is $359.3(3)^\circ$, and the angle is closest to the acyl oxygen (135.08(9)°) is opened up from the sp^2 angle of 120°. In the crystal structure of triphenyltin acetate [3], the covalent Sn-O bond is 2.185 Å and the dative Sn-O bond is 2.349

Fig. 1. Triphenyltin chloroacetate.

Å, the two axial bonds forming an angle of 173.6° . The effect of the chlorine substituent in the acetate group on bond lengths is therefore seen to be marginal *, and the fractional atomic coordinates of the non-H atoms of the triphenyltin chloroacetate molecule (Table 1) are, in fact, nearly identical to those reported [3] for triphenyltin acetate. The compounds are isostructural, as are triphenyltin saccharin-ethanol [18] and triphenyltin saccharin-glycolic acid [19]; however, trivinyltin acetate and trivinyltin chloroacetate [20] are not, although the geometries around the tin atoms are similar.

Acknowledgements

We thank the National Science Council for R&D, Malaysia (Grant No. 2-07-04-06) and NIH MBRS for supporting this work.

References

- 1 S.W. Ng, Chen Wei and V.G. Kumar Das, J. Organomet. Chem., 345 (1988) 59.
- 2 H. Chih and B.R. Penfold, J. Cryst. Mol. Struct., 3 (1973) 285.
- 3 K.C. Molloy, T.G. Purcell, K. Quill and I.W. Nowell, J. Organomet. Chem., 267 (1984) 237.
- 4 M.M. Amini, S.W. Ng, K.A. Fidelis, M.J. Heeg, C.R. Muchmore, D. van der HeIm and J.J. Zuckerman, J. Organomet. Chem., 365 (1989) 103.
- 5 S. Matsubara, M. Katada, K. Sato, I. Motoyama and H. Sano, J. Phys., Colloque C2, 40 (1979) 363.
- 6 R. Barbieri, A. Silvestri, L. Pellerito, A. Gennaro, M. Petrera and N. Burriesci, J. Chem. Soc., Dalton Trans., (1983) 1980.
- 7 K.C. Molloy and K. Quill, J. Chem. Soc., Dalton Trans., (1987) 1417.
- 8 A. Kirpal, Chem. Ber., B57 (1924) 1954; Chem. Abstr., 19 (1925) 655⁸.
- 9 B.F.E. Ford and J.R. Sams, J. Organomet. Chem., 31 (1971) 47.
- 10 C.B. Storm, C.M. Freeman, R.J. Butcher, A.H. Turner, N.S. Rowan, F.O. Johnson and E. Sinn, Inorg. Chem., 22 (1983) 678.
- 11 B.A. Frenz, TEXRAY Structure Determination Package, Molecular Structure Corporation, 3304 Longmire Drive, College Station, TX 77840 U.S.A.
- 12 D.T. Cromer and J.T. Waber, International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974; Table 2.2B.
- 13 J.A. Ibers and W.C. Hamilton, Acta Cryst., 17 (1964) 781.
- 14 D.T. Cromer, International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974; Table 2.3.1.
- 15 K.C. Molloy, K. Quill and I.W. Nowell, J. Chem. Soc., Dalton Trans., (1987) 101.
- 16 S.W. Ng, V.G. Kumar Das and A. Syed, J. Organomet. Chem., 364 (1989) 353.
- 17 V.G. Kumar Das, Chen Wei, S.W. Ng and T.C.W. Mak, J. Organomet. Chem., 322 (1987) 33.
- 18 S.W. Ng, Chen Wei, V.G. Kumar Das and T.C.W. Mak, J. Organomet. Chem., 373 (1989) 21.
- 19 S.W. Ng, Chen Wei, V.G. Kumar Das and T.C.W. Mak, J. Organomet. Chem., JOM 20380.
- 20 G. Valle, V. Peruzzo, D. Marton and P. Ganis, Cryst. Struct. Commun., 11 (1982) 595.

^{*} Note added in proof: Two more chlorine atoms disrupt the polymeric structure, and triphenyltin trichloroacetate is a four-coordinate molecule: S.M. Roe and N.W. Alcock, Sixth International Conference on the Organometallic and Coordination Chemistry of Germanium, Tin and Lead, Brussels, Belgium, July 23-28 (1989), p. 23.