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Abstract 

Five-coordinate triphenyltin chloroacetate was assigned a rigid, carboxylate- 
bridged trans-C,SnO, chain structure on the basis of variable-temperature tin-119m 
Miissbauer (d[ln f(T)]/dT -0.0105 K’ for 80 IS I T I 130 K) data, and the 
assignment has been confirmed by X-ray diffraction. Its structure is determined 
from 5372 [( F,)2 > 3a( F,)2] MO-K, reflections and refined to an R factor of 0.042; 
the compound crystallizes in the P2,/c space group with a 9.022(3), b 10.217(3), c 
19.780(5) AL, j3 92.46(2)O; Z = 4. Triphenyltin chloroacetate is isostructural with 
triphenyltin acetate, whose d[ln f(T)]/dT value has been redetermined to be 
- 0.0143 K-i. 

Triorganotin alkanoates are generally carboxylate-bridged, five-coordinate poly- 
mers [l] whose Sn-O-C=0 : atoms comprise the repeat units. The polymer chain is 
zig-zag in trimethyltin acetate [2] and distorted helical in triphenyltin acetate [3], but 
is intermediate between the flat and helical conformations in the mixed compound 
dimethylphenyltin acetate [4]. Variable-temperature tin-119m Mossbauer spec- 
troscopy [5,6] has been used to probe such structural variations since the tempera- 
ture dependence of the Mossbauer recoil-free fraction f (d[ln f(T)]/dT = -a) 

provides a spectroscopic means of distinguishing between rigid and flexible struc- 
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tures for organotin polymers. There is some overlap of the -a values among the 
four (rod, zig-zag, stretched S and helical [7]) classes, but for phenyltin compounds 
in general the rigid polymers give rise to - L( values of the order of 0.011 K-l. 
whereas for more flexible polymers, the -a values approach those of non-inter- 
acting molecules (0.014-0.028 K-‘) [7]. 

Triphenyltin chloroacetate has in its ester unit an electron-withdrawing halogen. 
which could be expected to enhance the Lewis acidity of tin, but diminish the Lewis 
basicity of the carbonyl oxygen that participates in bridging [4]. Which of these two 
opposing effects will predominate can be assessed by comparing structural data for 
triphenyltin acetate and triphenyltin chloroacetate. The crystal structure and varia- 
ble-temperature Mijssbauer data have been previously reported [3] for triphenyltin 
acetate and the results of a similar study of the chloroacetate are described below. 

Experimental 

Crystals of triphenyltin chloroacetate were obtained by slow evaporation of a 
methanol solution containing equimolar amounts of [2-HOC,H,NCH,C(O)OH]Cl 
[8] and (C,H,),SnOH; m.p. 155%156°C (Lit. 154-756°C 191). Anal. Found: C, 
54.28; H, 3.86. C,,H,,ClO,Sn calcd.: C, 54.16; H, 3.86%. Miissbauer (80 K): isomer 
shift (IS) 1.31, quadrupole splitting (QS) 3.70, r, 1.11, I’, 1.15 mm so ‘; slope of the 
variable-temperature (80 K 2 T i 130 K; 6 points, corr. coeff. - 0.999) Miissbauer 
plot a -0.0105 K-l. For triphenyltin acetate, the Mtissbauer data are: IS 1.28. QS 
3.4S1 r, 1.05, r, 1.12 mm s- ‘. u - 0.0143 K’ for X0 K 2 T < 130 K; 6 points, 
corr. coeff. - 0.0999. 

Structure determinution 
Standard centering and auto-indexing procedures on the crystal of triphenyltin 

chloroacetate were performed with a Nicolet P3m automatic diffractometer (MO-K,, 
radiation, X 0.71073 A). Although the LY and y angles were very nearly 90”. the 
axial photographs pointed to a triclinic cell, whose accurate dimensions. determined 
from a least-squares fit of 15 reflections (44” -=I 28 < 45”) scattered evenly 
throughout reciprocal space, were a 9.022(3), h 10.217(3), c 19.780(5) A; n 89.96(3). 
/3 92.46(2), y 90.07(3)“. Procedures for data collection were as previously described 
[lo]. The intensities of 4 standard reflections (ill. 004, 020, 200) measured after 
every 96 data showed no significant crystal decay during the collection of 16407 
independent ( - 14 2 h I 13, I- 16 I k I 16. 0 < I i 32) refIections. Redundant and 
equivalent reflections were averaged and converted to unscaled 1 i”;, / values. follow- 
ing corrections for Lorentz and polarization factors, The structure was solved by 
direct methods using the MULTAN-82 program. Full-matrix least-squares refine- 
ment followed by difference Fourier synthesis revealed the position of all atoms. 
The non-H atoms were refined anisotropically. The H-atoms were assigned isotropic 
temperature factors equal to 1.2 of their respective parent carbon atoms. The 
computations were performed on a PDPl l/73 minicomputer with the TEXRAY 
structure determination package [ll]. The atomic scattering factors were taken from 
the International Tables for X-ray Crystallography [12,13]; the effects of anomalous 
dispersion for the non-H atoms were included in & [14]. The initial refinement in 
the Pi space group converged to R = 0.046, R,, = 0.059 for the 11080 observed 
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Table 1 

Atomic coordinates and equivalent isotropic factors for triphenyltin chloroacetate 

Atom X Y z %, N2, u 

Sn 
Cl 

O(l) 

O(2) 

C(1) 

C(2) 

CW) 

C(l2) 

CG3) 

C(14) 

C(l5) 
C(l6) 

C(21) 

C(22) 

~(23) 

~(24) 

~(25) 

C(26) 

C(31) 
~(32) 

C(33) 

C(34) 

C(35) 

C(36) 

0.08857(3) 

0.3707(l) 

0.2064(3) 

0.0463(3) 

0.1480(4) 
0.1988(6) 

0.1429(4) 

0.1865(5) 

0.2346(6) 
0.2388(6) 

0.1971(6) 

0.1487(5) 
0.2412(4) 

0.2141(5) 

0.3156(6) 

O&79(5) 
0.4767(5) 

0.3741(5) 
- 0.0963(4) 

- 0.0664(5) 
- 0.1797(7) 

- 0.3227(6) 
- 0.3576(6) 

- 0.2430(5) 

0.70106(2) 

1.0386(l) 

0.8683(3) 

1.0163(3) 
0.9811(4) 

1.0756(5) 

0.7418(4) 

0.6376(4) 

0.6571(5) 
0.7814(6) 

0.8857(5) 

0.8676(4) 

0.5682(3) 
0.5080(4) 

0.42145) 

0.3916(5) 

0.4526(6) 
0.5398(5) 

0.7403(4) 

0.7651(5) 

0.7858(5) 
0.7850(5) 

0.7608(7) 

0.7405(6) 

0.23687(l) 
0.10475(7) 

0.1940(2) 

0.2272(l) 
0.1912(2) 

0.1384(3) 

0.3406(2) 

0.3821(2) 

0.4489(3) 
0.4754(2) 

0.4347(2) 

0.3681(2) 

0.1959(2) 
0.1343(2) 

0.1080(3) 

0.1447(3) 

0.2057(3) 
0.2317(3) 

0.1696(2) 

0.1022(2) 

0.0541(3) 
0.0716(3) 

0.1376(4) 

0.1867(3) 

2.300(4) 

4.75(3) 

3x@(5) 

2.97(5) 

2.66(6) 
4.5(l) 

2.68(6) 

3.67(9) 

4.3(l) 

4.40) 
4.5(l) 

3.60(9) 

2.47(6) 
3.49(8) 

4.5(l) 

4.7(l) 

5.2(l) 
4.03(9) 

2.80(7) 

3.51(8) 

4.6(l) 
5.2(l) 

5.9(l) 

4.6(l) 

a Bi, = exp(-2?r2[h2a2U,, + k2b2U2, + 12c2U,, +2hkabU,, +2hlacU,3 +2klbcUI,]). 

[(I$,)* > 30(Q2] reflections, but examination of equivalent reflections revealed that 
the intensities of the hkl and hkl reflections were equal within experimental error. 
The structure was thus re-refined in the monoclinic P2,/c space group; the final R 
and R, factors are 0.042 and 0.063, respectively. The fractional coordinates and 
isotropic temperature factors for the non-H atoms for the final refinement cycle are 

Table 2 

Selected bond distances (A) and angles ( ’ ) in triphenyltin chloroacetate 

Bond distances 
Sn-0( 1) 

Sn-C(ll) 

Sn-C(31) 

W)-C(I) 
C(2)-Cl 

Bond angles 
O(l)-Sn-O(2)’ 

O(l)-Sn-C(21) 

O(2)‘-Sn-C(11) 

O(2)‘-Sn-C(31) 
C(ll)-Sn-C(31) 

Sn-O(2)‘-C(1)’ 

2.201(2) Sn-O(2)’ 0 

2.130(2) Sn-C(21) 

2.127(2) 0(1)-C(l) 
1.239(3) C(1PwI 
1.755(3) (C-C)phenyl 

174.75(6) O(l)-Sn-C(11) 

91.00(7) O(l)-Sn-C(31) 

88.07(8) O(2)‘-Sn-C(21) 

86.51(8) C(ll)-Sn-C(21) 

135.08(9) C(21)-Sn-C(31) 

143.7(2) (C-C-C),klI,l 

2.372(2) 
2.119(2) 

1.267(3) 
1.508(4) 

1.385(4) 

97.16(S) 

89.50(8) 

87.41(7) 

lllSl(9) 
112.73(9) 

120.0(3) 

u (‘) transformation: X, - f + y, f - z. 
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listed in Table 1. Table 2 lists selected bond lengths and angles. Listings of 
anisotropic temperature factors and structure factors are available from the authors. 

Crysral data: Triphenyltin chloroacetate, C,,H,,ClO,Sn, M, 443.50, monoclinic, 
P2,/c, a 9.022(3), h 10.217(3), c 19.780(5) A, p 92.46(2)“; V 1822(2) Ai’, 2 = 4; D, 
1.616 g cm-3, 0, 1.613 g cm-’ (ZnBr,/H,O), pMo 15.66 cm-‘, F(OO0) 880, 
R = 0.042, R, = 0.063 for 5372 [(F,)2 > 3a( F,)‘] reflections. 

Discussion 

The Mbssbauer IS and QS values for triphenyltin acetate and triphenyltin 
chloroacetate are in good agreement with reported values [3,9]. The variable-temper- 
ature study yielded a --LI value of 0.0105 K’ for the latter compound, a value 
indicative of a rigid polymeric conformation. The -u value is slightly larger for 
triphenyltin formate (0.0115 K -’ [15]) and triphenyltin 3-benzoylpropionate (0.0126 
K-’ [16]); both compounds are helical, carboxylate-bridged chains. An example of 
a helical, polymeric triorganotin carboxylate that is not carboxylate-bridged is 
triphenyltin 8-quinolyloxyacetate monohydrate (0.0199 K-’ [17]); the water is 
coordinated to tin and the molecules are held together by hydrogen bonds between 
the water and the heteroatoms of the quinolyloxy group. The -II value of 0.0191 
K-’ reported for triphenyltin acetate [3] therefore alpeared to us to be too high for 
a typical carboxylate-bridged structure, and we redetermined it and found it to be 
0.0143 K -‘, which although still large, is more in keeping with the rigid polymeric 
conformation. 

The crystal structure of triphenyltin chloroacetate is illustrated in Fig. 1. The 
molecules are carboxylate-bridged into a distorted helical chain whose geometry at 
tin is trigonal hipyramidal, with the oxygen atoms in the axially-most-electronega- 
tive positions (0-Sn-0’ 174.75(6)“). The covalent and coordinate tin-oxygen 
bonds are somewhat unequal (2.201(2), 2.372(Z) A). The sum of angles in the 
equatorial plane is 359.3(3)“, and the angle is closest to the acyl oxygen (135.08(9) o ) 
is opened up from the sp* angle of 120”. In the crystal structure of triphenyltin 
acetate [3], the covalent Sn-0 bond is 2.185 A and the dative Sn-0 bond is 2.349 

Fig. 1, Triphenyltin chloroacetate. 
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A, the two axial bonds forming an angle of 173.6”. The effect of the chlorine 
substituent in the acetate group on bond lengths is therefore seen to be marginal *, 
and the fractional atomic coordinates of the non-H atoms of the triphenyltin 
chloroacetate molecule (Table 1) are, in fact, nearly identical to those reported [3] 
for triphenyltin acetate. The compounds are isostructural, as are triphenyltin 
saccharin-ethanol [ 181 and triphenyltin saccharin-glycolic acid [ 191; however, tri- 
vinyltin acetate and trivinyltin chloroacetate [20] are not, although the geometries 
around the tin atoms are similar. 
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